The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.

نویسندگان

  • Junpei Takano
  • Motoko Wada
  • Uwe Ludewig
  • Gabriel Schaaf
  • Nicolaus von Wirén
  • Toru Fujiwara
چکیده

Boron (B) is essential in plants but often present at low concentrations in the environment. To investigate how plants survive under conditions of B limitation, we conducted a transcriptome analysis and identified NIP5;1, a member of the major intrinsic protein family, as a gene upregulated in B-deficient roots of Arabidopsis thaliana. Promoter-beta-glucuronidase fusions indicated that NIP5;1 is strongly upregulated in the root elongation zone and the root hair zone under B limitation, and green fluorescent protein-tagged NIP5;1 proteins localized to the plasma membrane. Expression in Xenopus laevis oocytes demonstrated that NIP5;1 facilitated the transport of boric acid in addition to water. Importantly, two T-DNA insertion lines of NIP5;1 displayed lower boric acid uptake into roots, lower biomass production, and increased sensitivity of root and shoot development to B deficiency. These results identify NIP5;1 as a major plasma membrane boric acid channel crucial for the B uptake required for plant growth and development under B limitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways.

Boron (B) is essential for plant growth but is toxic when present in excess. In the roots of Arabidopsis thaliana under B limitation, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, are required for efficient B uptake and subsequent translocation into the xylem, respectively. However, under high-B conditions, BOR1 activity is repressed through endocytic degradation, presum...

متن کامل

Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis.

Boron (B) is an essential plant micronutrient that is toxic at higher levels. NIP5;1 is a boric acid channel required for B uptake and growth under B deficiency. Accumulation of the NIP5;1 transcript is upregulated under B deficiency in Arabidopsis thaliana roots. To elucidate the mechanism of regulation, the 5' untranslated region (UTR) of NIP5;1 was tested for its ability to confer B-dependen...

متن کامل

Highly Boron Deficiency-Tolerant Plants Generated by Enhanced Expression of NIP5;1, a Boric Acid Channel

Boron (B) is an essential element for plants, and B deficiency is a worldwide agricultural problem. In B-deficient areas, B is often supplied as fertilizer, but excess B can be toxic to both plants and animals. Generation of B deficiency-tolerant plants could reduce B fertilizer use. Improved fertility under B-limiting conditions in Arabidopsis thaliana by overexpression of BOR1, a B transporte...

متن کامل

Insights into the Mechanisms Underlying Boron Homeostasis in Plants

Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under bo...

متن کامل

Polar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues.

Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation. The opposite polar localizations of the importer and export...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2006